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ABSTRACT

We present a Lagrangian-based metric theory of gravity with three adjust-

able constants and two tensor fields, one of which is a nondynamical "flat-

space metric" i. With a suitable cosmological model and a particular choice

of the constants, the "Post-Newtonian limit" of the theory agrees, in the

current epoch, with that of General Relativity (GRT); consequently our theory

is consistent with current gravitation experiments. Because of the role of

A, the gravitational "constant" G is time dependent and gravitational waves

travel null geodesics of q rather than the physical metric g. Gravitational

waves possess sixdegrees of freedom. The general exact static spherically

symmetric solution is a four parameter family and one of these solutions is

investigated in detail. Future experimental tests of the theory are dis-

cussed.
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I. INTRODUCTION AND SUMMARY

Within the past few years an elegant theoretical formalism, the "Para-

metrized Post-Newtonian" (PPN) framework, has been developedl to analyze

2
metric theories of gravity. The PPN framework is structured around the

"weak gravitational fields" and low velocities of the gravitational matter

which characterize typical solar-system tests of gravity. It classifies each

gravitation theory as to its form "in the Post-Newtonian (PN) limit." At

first it was hoped, and indeed seemed to be true, that the PN limit of each

theory of gravity is unique - thus by solar-system experiments alone, one

could, in principle, determine the "correct PN limit," which would then

correspond to one and only one "correct theory of gravity." In addition,

it was hoped and is hoped, that the "correct PN limit" is that of General

Relativity (GRT) (although we try not to let this fact prejudice our investi-

gations). To play devil's advocate, a program was initiated to attempt to

formulate theories of gravity with the same PN limit (and hence PPN para-

meters ) as GRT. The aims of such a program are two-fold, as one can ask

the following questions: (i) If such theories exist, how complex and con-

trived are their formulations? (ii) Do such theories have anything in com-

mon and in what respect do they differ from GRT outside of the PN limit?

The first question is primarily only of aesthetic interest. But the second

has the possibility of identifying powerful new theoretical and experimental

tools for testing relativistic gravity - indeed that has been the case (see

Sec. VI and Refs. 3 and 4).

In this paper we present and analyze a new theory of gravity - one

which has the same PN limit (for the current epoch) as GRT, given a suitable

cosmological model and a particular choice of the adjustable constants.
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Analysis of our new theory provides partial answers to questions (i) and

(ii) above.

A further motivation for study of this particular theory is to analyze

in detail the role of prior geometry2 in gravitation theories, a role which

will be investigated in more general terms in another paper.5

To date the authors are aware of three other new metric theories which

are candidates for sharing the property of having the same PN limit as GRT

(candidates in the sense of contingency upon the existence of special but

acceptable cosmological solutions and certain choices of the available adjust-

able constants). These theories are the Hellings-Nordtvedt theory,
6

Ni's

theory, and the Will-Nordtvedt theory. Of these three, Ni's theory con-

tains prior geometric elements like our own.

A. The Lagrangian Formulation

The equations of the theory are obtained, in the usual way, by varying

the dynamical variables in the Lagrangian:

L = If(rc 4), d4x + JG (gq>) d x + (la)

g = g(n,h), (lb)

Riem(Tj) = O, (lc)

where il,h,g are second-rank symmetric tensor fields: r1 is an absolute

variable
2

(not varied in L), h is dynamical, and g is constructed algebra-

ically from q and h. The Riemann tensor constructed out of 1 is denoted by

Rienm(n), and consequently Eq. (lc) states that i, is a "flat-space metric."

It is Eq. (lc), the "field equation" for R, that introduces geometrical

structure into the theory which is independent of the matter distribution
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- thus the "prior geometry." The gravitational Lagrangian density is denoted

by e, while the nongravitational Lagrangian density, 2 zNG' is the same as the

corresponding quantity in other metric theories, (e.g., GRT), with q\ repre-

senting the matter fields. The "physical metric," governing the response of

matter to gravity, is denoted by g.

Explicitly, jG and g are defined by the following:

= - (6XiT) -i LP:'(ah\ IlI l0 + fh Ih ,)(- T)1/2 (2)
U 1~~~~~~~

gIv = (1 - Kh)2 4r ,I

(a - 1 h a) a
V t =2 5 v

(3a)

(3b)

Conventions and definitions for the above are the following:

(i) Greek indices run 0-3, Latin 1-3.

(ii) units chosen such that G = c = 1 (gravitational constant today

and speed of light) (see Sec. VI).

(iii) slashes "I" and semicolons ";" denote covarient differentiation

with respect to the flat space-metric 10~ and the curved-space

metric goa respectively. Comma "," denotes a partial coordinate

derivative.

(iv) r is the determinant of nag.

(v) FC v is the Kronecker delta.
V

(vi) A v is defined by Eq. (3b).

(vii) indices on A0Q and ho~ only are raised and lowered with T v

i.e., h a h ( a - h, and y = ; indices on all other

tensors will be raised and lowered with go.

(viii) signatures of i and g are + 2.
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(ix) a,f,K are adjustable constants.

Motivation for the rather ungainly expression for the metric [Eqs. (3)]

comes from an analysis9 of the Belinfante-Swihart theory of gravity 1
0
- a

theory which can be reformulated, at lowest order, into a metric theory

with "effective metric" of the form of Eqs. (3). From that suggested alge-

braic form for the metric we have constructed the present full metric theory.

B. Summary

Section II includes a discussion of the field equations and a calcula-

tion of the PN limit of the theory. It is shown that there are mathemati-

cally ten degrees of freedom in the initial value problem for h (compared

with two for ggv in GRT). In the PN limit there are, in general, "preferred

frame effects"; such effects are, however, functions of only the cosmolo-

gical boundary values of h4v. By a certain choice of the cosmological model

one can make these effects vanish for the current epoch. We suspect that

such time-dependent preferred-frame effects are a common property of prior

geometric gravitation theories. At any rate, the observed absence of

preferred-frame effects can only place upper limits on the cosmological

boundary values of h4¥.

Section III derives and discusses the equations of stellar structure

for static, spherically symmetric stars. The equations are much more com-

plicated than the corresponding ones in GRT (see Table I) and there is prob-

ably no analytic solution even for a star of constant density. In addition,

a stellar model is not uniquely specified by giving its equation of state

and central pressure, as is the case in most other theories. The exact

exterior, static spherically symmetric solution is obtained and is found to

be a 4-parameter family.
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Section IV includes an analysis of a special exterior spherically

symmetric solution. For this special solution, the effective potentials

for particles and photons are similar to the corresponding quantities in

the Schwarzschild geometry of GRT, outside of a couple of "Schwarzschild

radii." However, the physical manifold extends only to p = 1.5 m, which

is a "point at infinity" (not reachable in finite affine parameter by any

geodesic).

There are no singularities or horizons (i.e., no black hole) in the

physical manifold in this exact solution, but a peculiar geometrical effect

in which the proper surface areas of concentric spheres centered on p = 0

pass through a minimum and then increase as one moves radially inward

(decreasing p and increasing proper time for radially falling observer).

The minimum of areas is approximately 97im
2
and occurs near p = 2.7 m. The

areas then increase to infinity at p = 1.5 m, although space is not flat

there.

It is also found that one cannot embed the entire constant time,

equatorial geometry in a Euclidean 3-space, but that a pseudo-Euclidean

space is necessary for 1.5 m < p S 2.1 m.

Section V discusses time-dependent solutions, conservation laws, and

gravitational waves. Birkhoff's theorem
1 2

does not hold in this theory,

i.e., the exterior geometry of a spherically symmetric and asymptotically

flat spacetime need not be static - collapsing stars can radiate monopole

gravitational waves. The general plane gravitational wave has six physical

degrees of freedom, the maximum number possible in a metric theory of gravity.
3
'

As the theory is Lagrangian-based, conservation laws follow and one can

construct a gravitational stress-energy complex. Appropriately defined, the

stress energy-density of this object is positive definite for all possible
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polarizations of plane waves. In addition there is a purely gravitational

quantity conserved all by itself, probably of only mathematical interest.

Section VI discusses the time dependence of the gravitational "constant"

and further possible experimental tests of the theory. In particular, a

search for time delays between reception of gravitational and electromagnetic

bursts and a search for "non-GRT" type polarizations of gravitational waves

promise to be important future experimental tests of the theory. Such tests

would also be crucial in the theories of Refs. 6, 7, 8; and their identifi-

cation represents an important success in our program of "devil's advocate."

II. FIELD EQUATIONS AND POST-NEWTONIAN LIMIT

Variation of Eq. (1) with respect to the dynamical field variable h

yields the following gravitational field equations:

(- ])l/2(ao h
v

' + f rIv O h) = - 4-To$(- g)l/2( g /6h v) (4a)

where

l hIv B hC V 1C 1 (4b)

T - 2(-'g) - 1 /2 (8 G/g) , (4c)

and 8 is the variational derivative.

From the matter equations, obtained by variation of qh in Eq. (1), one

can show in the usual manner (see, e.g., Ref. 13)

T4 = O . (5)

Equation (5) is the typical "matter response equation" in metric theories.

Contraction of Eq. (4a) with rgv yields an equation for h alone, which

can be substituted back into Eq. (4a) to yield
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[] h (4 /a)(- g)1/2(_ ) -l/2TO,[ Qv f(a + 4f)-l ] T (6a)

where

$PV ag /8h . (6b)

The linearized limit of Eq. (6a) is

EhD (/a) TQo F V - LV(f + 2Ka)(a + 4f)- (7)

Unlike metric theories without prior geometry, the four Eqs. (5) do

not follow from the gravitational field equations; they are additional

equations. However, there is no problem of overdetermination because all

of the 10 components of h"v are now dynamical variables; i.e., if all of the

essential coordinate freedom is used up in choosing a frame in which Bo,

has a particular set of components, [usually diag(-1,l,l,l)], then there is

no coordinate freedom left to adjust the components of h v.

For example, for a perfect fluid T
C
O is described by four matter

variables once an equation of state is given (3 components of four velocity

and energy density, for example). Thus Eqs. (5) and (6a) comprise a system

of fourteen independent equations for the fourteen unknowns.

We also note that all of the ten Eqs. (6a) involve second time deriva-

tives of hv. Thus in the Cauchy problem all of the hgv are to be regarded

as dynamical variables and there are ten degrees of freedom. Once god has

been constructed from nBe and hCo, however, coordinate transformations can

be performed and so there can only be six "physical" degrees of freedom.

This is to be contrasted with GRT in which not only can four of the g o be

chosen arbitrarily by coordinate conditions, but also four of the field

equations involve only first time derivatives. Thus in the corresponding

Cauchy problem, the Einstein gravitational field has only two physical
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degrees of freedom.

The PPN framework of Nordtvedt, Will, and others can be used to analyze

the predictions of all metric theories with respect to solar-system experi-

ments (e.g., light bending, perihelion shift, gravimeter data, earth-moon

separation, etc.). The reader is referred to Ref. 1 for a complete summary

of the PPN framework. Briefly, this formalism involves expanding the metric,

in the manner of Chandrasekhar, in the small dimensionless quantities which

occur in the solar system stress energy tensor, e.g.,

v2 v U v (P/o) o n O(
2

) 10- 7 (8)

where v is the squared velocity of a typical fluid element, U is the

Newtonian potential, P/p is the pressure divided by energy density (specific

pressure) and IT is the specific internal energy. It is found that, in a

particular coordinate gauge, and for most metric theories - including ours

- there are only nine different functionals which can occur in the metric

at PN order and only nine independent parameters multiplying these functionals.

Almost all twentieth century gravitation experiments to date can be summa-

rized by their constraints on these nine parameters, the "PPN parameters."

We now calculate in our theory the PN limit, which will involve a

perturbation solution of Eq. (6a). For calculational ease we assume a

coordinate system in which no1 takes on Minkowski values. Before we begin,

a crucial point must be recognized.1 5 The metric gos has the form

gc = n~ + O(h) ,

and we know that far away from the solar system there is some coordinate

system in which gc~ takes on Minkowski values. However, this coordinate

system will, in general, not be the same frame in which qoI takes on
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Minkowski values; there is no a priori reason why the boundary values of

h should be zero in this coordinate system. Thus in solving Eq. (6a)

we are not at liberty to set equal to zero for all time the "arbitrary

constant" which may be added to h v; this complicates considerably the con-

struction of the PN limit of our theory. However, we feel that this com-

plication and its origin are of sufficient educational value to warrant a

detailed discussion.

Denote the nearly constant boundary values of h v by wRv (w v can

only change on a cosmological time scale by definition) and the part tied

directly to the solar system by h v; i.e.,

h =h + (9)Pv gLv 4v

Now use the six-parameter invariance group of the Minkowski metric to

pick a coordinate system in which w v is diagonal, reducing w v to four

components. Without justification, but for simplicity, we now assume that

the three spatial components of wv are equal. Such an assumption does not

effect the qualitative conclusions of this section. Further assume that

lvl << , (10)

although w v does not have to be as small as the O(c) indicated in Eq. (8).

Equation (10) will turn out to be an assumption consistent with the ultimate

experimental limits on the w v.

Next expand Eqs. (3a) and (3b) in a power series in h :

= RIev - 2Khi + hv + K
2
h - 2Khh + hh v + ....

When Eq. (9) is substituted into Eq. (11) one obtains
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. ~ 2 * 3 .
goo = - Do0 + E - F0h K2 h - 2Kh 0h - v hoo v (12a)

gi = Dij + Ehij + FSh 2Kh hij + K
2
h

2
+

3
h 2 (12b)

ij ii ii ij i ij ij

g0k= Hh0k , (12c)

where all of the constants appearing in Eqs. (12) have the form:

Do = 1 + 0(w), etc., and are given explicitly to (w 2 ) in Appendix A, along

with other constants appearing below. Using Eqs. (12) and a perfect fluid

for the matter stress-energy tensor, one obtains from Eq. (6a)

1 c~j I * . 2
)
1h*lv - (4hj/a) I pvv ( + I h0 0 + I2h + ( - 2K) %v

+L Av +3 8 + OW V + M1 W + NvPv p Ch*

3 g c *v 2Kh* * P V + Mi h oC . (13)

In Eq. (13) I, Il, I2, I3, M, N are all functions of a, f, K, wv (see

Appendix A) and

W 3 1 1 -Wl 0 0 (14a)

_= dx /dt , (14b)

p _ proper mass-energy density measured
in the rest-frame of the fluid. (14c)

To simplify an already complex presentation, we have omitted the pressure

from the perfect fluid stress energy tensor and included the internal energy

in the total proper energy density p. (Such terms are not omitted in quot-

ing the final PPN parameters.) We now write

h* ~ v
= (1)h*Lv + (2)h*v + ... , (15)
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in a perturbation expansion and obtain (see Appendix A for notation)

V2 ()h *00= 4rrpl(l - 2Kw) + L ( ) -w( + M) 4P C0o

V2 (l)hhij = - irpr(Mwo - L) 5i j -_4p C15 i j

v2 (1)h*Ok= _ 4pk(l - 2Kw)+ 3 Wlv - C2 ,

v2 (2)h00 = p(S( )h*00 S ()h*+ B 2 ) + ()h 00

V (2)h*ij = _ RoViVJ+ 8 (Rl)h00 + R2(l)h + Bv 2)1 +

where

T - (aI) 

(16a)

(16b)

(16c)

(16d)

(1)h *i (1Se)
, 00 

(17)

Solutions of the equations are

(1)h*00 = CoU , (18a)

(l)h*ij = 8ij C U (18b)

(l)h*k = C2 Vk , (18c)

(2)h*oo = TISCo + S1(3C c- c0)J 2 + tBol + COx 0 0 (18d)

(2) *Cij O 3ij ij'RC D( V'
(2)h*i = TR

0 3 T 1 0+ 2(3c1 - c0) '2

+ zBi l l+ C15 iJ 0 (18e)

where we have defined the five "potentials" U, Vk, 1' j2' 2J~ and the

"superpotential" X aa follows:

U(x,t) - p(x',t)lx - x'1-l d3x' (19a)

Vk(X't) ( p(x', t)|x - x'{
-
1 vkd3 x' (19b)

l(x,t) =S p(x',t) v2 Ix - x'1-1 d3 x' (19c)

11



a2(X, t) J U p(x',t)|x - x' U(x', t) d x' , (19d)

(ix, t) -S p(x',t)lx - ' vi v d3 x' (19e)

V
2
x = . (19f)

Using Eqs. (12) and our solutions, Eqs. (18), we now compute the metric:

g00 = - Do 
+

K1U 
+

K2U + K32 
+

K-l K1X,0 (0a)0

gij = ij(D + K5U) ,(20b)

g0k = - HC2 Vk . (20c)

Notice that the metric does not approach the standard Minkowski tensor far

away from the solar system (when the potentials U, o1' V 2' Vk, X + 0) because

of the leading constants DO and D1. We must therefore make a "scaling"

transformation:

t =D - 1 / 2 t (21a)

=D 1/2x . (21b)

In the tensor transformation law for the metric

g (i)= gc(x) -x -v -= gc[U(x,t), l(x,t), t ... ) x (22)

we also need to express the potentials as functions of the new (barred)

coordinates. An example of the procedure is the following: since p is a

scalar

(xt) = p(x,t) , (23a)

U(x,t) = J' p(x',t)x - x'-1 d3x' = S ',T) - x' -1 d3 x

- 1 P ,) x - x' I-1 d3-x = D-1 ( (23b)
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In a similar manner one finds

%2 (x,t) = D 2
2 (xt) ,

l(X, t) = DoDD 1 i, t)

Vk(x,t) = D1/2D- 3/2 Vk(x,T)

-.2 -

X,0 0
= D0 X-2D

,00

Making the transformation indicated in

the bars, ggv becomes

= - 1 + Do1D I K1 U + D o-1D- K2 U2 +

gij = Sij(l + D2 KU) ,

gOk = - HC2D- 
2

Vk 

Eqs. (22) and (23) and then dropping

D0
1
D

2

K3 2 + D2 ¢l + D K1 X, o , (24a)

(24b)

(24c)

A final coordinate transformation must be made to remove the X 0 0 term from

g0 0 and reduce the metric to "standard PPN form." However, additional

transformations of the form of Eqs. (23) are now negligible corrections and

no distinction need be made between functions of new and old coordinates.

The result of the final transformation, t + t +1/2 D K
1
X O' is

9oo g0 0 - K1D-X O0 , (25a)

(25b)
gij 

+
gij '

1 KID - Wk

g~k 
+
f g~k + ~. K1 I(Vk Wk) (25c)

where Wk is a new potential defined by

Wk - p[v . (x - x')] x - x' -1 (x - x')kd 3 x' . (26)

13
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We now demand the proper Newtonian limit, i.e.,

go0 0 1 - 2U + ...

which requires

KD-1D -1= 2 today ; (27)

(a consequence of our choosing units in which the gravitational constant is

unity today). Equation (27) expresses a constraint between the three adjust-

able constants a, f, and K for a given set of w . Comparing Eqs. (24)-(25)

with the definitions of the PPN parameters and using Eq. (27) to simplify,

one finds

2Y= D5 _ y(a,f,K) + 0(w) (28a)

1 -1-2
1i = - 1 Do IDK2 -(a, f,K) + O(w) (28b)

51 = r2 = t3 = t4 = 4 3 = °, (28c)

a, = 2HC2D - - 4 = 0(w) , (28d)

= DoD - 1 =(w) . (28e)

where y and ¢ are defined implicitly by the relations

a = (2~ + 2)- 1 , (29a)

(lo + 6~- -2 1-2 1
f = (o0 + 6y B -_ 77-2 8- 86)[2(y + 1)(3 - 5 - 4X)2] - .(29b)

In GRT, r = ¢ = 1 and the other seven parameters vanish. In our theory it

is clear that the two adjustable constants, a and f, may be so chosen to

give any value to y and D. For example, if the w are all zero, one can

satisfy Eq. (27) and have y = P = 1 with the choice

(a,f,K) I= 5 - (30)
(afK) = (-, '- 6--~ 166 '



It has been shown that the nonvanishing of , a
2
, or CS leads to non-

invariance of the functional form of the metric of Eqs. (24)-(25) under

post-Galilean transformationsl7 (curved-space versions of Lorentz trans-

formations). New terms, involving the velocity of the Lorentz boost with

respect to the current "preferred frame" and multiplied by combinations of

18
al, a2' a5 appear in the metric. Nordtvedt and Will have calculated the

experimental consequences of the resulting "preferred-frame effects" and

find that they lead to periodic anomalies in such phenomena as the solid

earth tides, secular perihelion shifts, etc. The reader is referred to

their paper for further details and we quote here only the current experi-

mental limits on O and a2:

5 ' 0.1 , (31a)

a 2 ' 0.02 . (31b)

We have calculated explicitly the quite complicated functions a1 (wV),

a2 (w v) and have examined their numerical values over a large range of con-

stants a and f (consistent with the experimental limits on 7 and i). We

find that the experimental constraints indicated in Eqs. (31) require appro-

ximately

IwoI + 1Wl 1 .015 . (32)

Even if we had not made the simplifying assumptions about the form of w v

its individual elements presumably would still be required to satisfy roughly

the constraint of Eq. (32).

Since the w v are cosmological boundary values of h v, one must solve

the cosmological problem for a particular cosmological model to obtain the

theoretical values of the w v' Because of the absolute nature of nc', it
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should be possible to construct cosmologies such that, during the current

epoch, the curved and flat-space metrics approach Minkowski form, far from

the solar system, in the same coordinate system. Such a cosmology would

guarantee that the w vanish at present, although a time dependent cos-
lI-v

mology would certainly cause nonzero values of w to occur over cosmolo-

gical time scales. Indeed, perliminary results from a cosmological solution1 9

possible to make all of the wiv arbitrarily small for the current
indicate that it is/epoch - and still have a reasonable cosmological model.

Thus, a consistent solution exists for which the PN limit of our theory is

arbitrarily close to that of GRT in the current epoch.

Further details regarding the time dependence of the w are given in

Sec. VI.

III. THE GENERAL STATIC SPHERICALLY SYMMETRIC

SOLUTION AND EQUATIONS OF STELLAR STRUCTURE

A. The General Exterior Static Spherically Symmetric Solution

Before writing down the equations of stellar structure for a static

spherically symmetric star, let us construct the general static spherically

symmetric exterior solution (which must then be joined onto the solution

inside the star).

First of all, choose a coordinate system in which

1 2 . (33)

r sin 2

The most general form of h in this coordinate system which satisfies the
symmetry requirements isv20

symmetry requirements is20
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(i-r) A(r)

· t (r) * (r)

hv = 0 0

0 0

0

0

rA(r)
soh~~

0

0sin (r)

r2sin29 A\(r)

The homogeneous field equations for h are simply
'-v

CO hV I1 = 0

The solutions to Eqs. (35) which are well behaved at infinity are2

al/r

(- 2a4/r
2

pv 0

0

- 2a4/r2

a2 /r - 2a3/r3

0

0

sO

TO

0

0

r2 (a2 /r + a3 /r3 )

0

0

r2sin2(a2/r + a3 /r3) ,(36)

where al, a2, as, and a4 are arbitrary constants. We remind the reader that

the r coordinate in Eq. (36) has, at this point, no interpretation other than

its relation to the group - theoretically defined assumption of spherical

symmetry. Construction of gpv from h v is purely algebraic [see Eqs. (3)],

and the details will not be given here. Since h has off-diagonal terms,
'-v

so will gv'. However, having obtained gv' we can make the coordinate trans-

formation

t + t + dr
g00

which then diagonalizes the metric, and we finally obtain

goO = (1 - Kh) 2 Y2- (1 2 r + 3 '
L r

(37)

(38a)

17
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2 {(a 
1 2 2 2 + '(a - a2 ) r 1 + a3 r3J

gr =(1- kh) Y(1 + 1 1 2 2 (38b)

r 4a4 /i a2 a3\

r r

(1~kh)2 2( 1 a 2 1 
3

2 (38c)
go0 (1- 22 r

2

- - ,
r

gC = sin O gig , (38d)

h r (3a2 - a
l
) , (38e)

r 1 1 1 -2 -3 / 2 1 \ -hi
y [1 2+-(a

1
- a

2
) r -r ala

2
r + ar + a ] ,(38f)

ds2 = goodt + grrdr + g +gd + gp d . (39)

Equations (38) for the metric indicate a 4-parameter family of solutions for

the general static spherically symmetric exterior metric. One can convince

himself that all four of the parameters are physical (not removable by coordi-

nate transformations) by transforming to curvature coordinates and verifying

that four arbitrary parameters remain. In Sec. IV we will investigate

more closely a particular member of the 4-parameter family.

B. Stellar Models

We idealize a star as a spherically symmetric, static mass of perfect

fluid and assume a temperature-independent equation of state

p = p(P) , (40)

where p is the pressure and p the energy density. We work in the coordinate

system in which v has the form of Eq. (33).
2
3 For mathematical simplicity

we seek solutions for hv which are diagonal, i.e., with p(r) = 0 in Eq. (34).
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Such solutions represent a subclass of all possible solutions and corres-

ponds to the condition a
4
= 0 in the exterior metric [cf. Eqs. (36) and (38)].2k

The metric now has the form

1 -2
·- (1 + ) .2)2

gv = (1 -Kh) r 2 ( 1 )22 )
r2sin2(l1 )-2 , (41a)

where

h - + + 2\ (41b)

Equations (5) and (6a) together with Eq. (40) are the necessary set for

computing the structure of our stellar model. With the usual fluid stress

energy tensor

TO0 = (p + p) a'tui + pgO (42)

one finds that the only nonvacuous equation resulting from Eqs. (5) is

dp/dr = (p + p) 2K(1 - h) 1 dh/dr + (1 + ) 1 dcp/drj . (43)

Using the Christoffel symbols for i, one finds that Eqs. (6a) yield

the following:

= - 4l (a + 1f)- 8K( - 3p) + (1 - Kh)Ip(l - 2 .)- + 2p(1 - 2 7)

- p(l+ I9)-l] (44a)

v2cp = (f/a)V2h - (4r/a)r12K(3p - p) + (1 + l)- (1 - Kh)p (44b)

2= 4( ) r 2 - (f/a) V2 h - (~4/a)r 2K(p - 3p) + (1 1( - h)p] , (44c)

where
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V2 = d2/dr2 + 2r
-
l d/dr (45a)

r - (1- Kh)3 (1 + -P)- (1 1 -)-1 (1 )-2 (45b)

Equation (44a) follows from taking the trace (with respect to iT) of Eq. (6a).

Equations (44b) and (4 4 c) are the 0-0 and r-r components respectively of

Eq. (6a). Altogether, Eqs. (40), (43)-(44) are five highly nonlinear coupled

equations for the five unknowns p, p, cp, , and I. Linear combinations of

Eqs. (44) can be taken to yield

V2( [l- ?/) a) 1 -) (/1 -K- 1 - + 6r- (I/ - ?\) , (46)

which is an equation we will later discuss.

Outside of the star the physically acceptable solutions to the homo-

geneous forms of Eqs. (44) are [cf. Eq. (36)]

P = al/r , (47a)

, = a2 a./- 2a3/=3 , (47b)

= a2/r + a/r3 (4 7c)

The constants al, a2, and a5 are to be determined by matching conditions

at the surface of the star. The general procedure in constructing stellar

models is to choose various central values for the variables, integrate the

equations outward from the center until the pressure vanishes, and thus

establish the surface of the star. Various boundary conditions must typi-

cally be satisfied, but in the case of GRT, for example, the conditions can

be satisfied in a trivial manner without multiple trial integrations. The

situation here, as we shall see, is vastly more complicated.

As long as the denominators do not vanish (see discussion below),
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Eqs. (44) are regular at the stellar surface and hence require that rp, r*,

r7 and their first derivatives be continuous across the surface. Using Eqs.

(47) and denoting quantities evaluated at the surface by a subscript s, one

obtains the six matching conditions:

ps = a/R, ( r)s = -al/R 2 (48a)

s = a2/R - 2a3/R3' (tr)s = a/R2 + 6a/R4 (48b)

k s = a2/R + a3 /R
3
, ( r)s = - a2 /R2 3a3/R

g
(48c)

where r = R is the surface of the star.

What are the appropriate central quantities to be specified? Suppose

we regard (r - ?), and tp as the three independent gravitational potentials.

Then a possible but nonunique solution to Eq. (46) is * - A = 0 everywhere,

corresponding to considering r an isotropic radial coordinate. However,

forgetting this special case for the moment, the regular solution of Eq.

(46) near the origin is

* - X - const. r2

Thus one central condition to be specified is

[ (, -
c

)/r2 ,

where we denote by c quantities at the center, analogously to the quantities

at the surface discussed above. The equations for h and Cp are regular at

the origin as long as the potentials are sufficiently small and therefore,

in analogy with the corresponding electrostatic equations, the derivatives,

at the center, of p and ? must vanish. However, the central values of the

potentials themselves must be specified, and hence the two other central
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parameters are tc and hc Thus in general we have six parameters to adjust,

e.g., a1 a2 a2 , as p, c , [(9 - ?)/r2 ]c in order to satisfy the six matching

constraints given in Eqs. (48), for a given equation of state and central

pressure. One way of viewing the boundary conditions is that Vc' c'

[(9 - A)/r
]

must be so chosen as to match onto a regular exterior solution

at the star's surface - such a two-point boundary value problem in general

has a discrete set of solutions, i.e., for a given pc and equation of state

there may be no lpc~, ?ce [(i - ?)/r23cI such that there is a solution, or

there may be many different sets. Thus the central pressure and equation

of state do not uniquely specify the stellar model in general. However, we

do know that for a weakly gravitating star (P/<P> << 1, cp, ?, << 1).

Equations (44) become linear and do indeed have unique and well behaved solu-

tions for each central pressure (Newtonian, and post-Newtonian regimes, see

Sec. II). However, we can expect that as the models become more and more

relativistic, a point is reached where each pc and equation of state branches

into a discrete spectrum of stellar models.

If one trys as a solution to Eq. (46) r = A, then a more convenient

form of the boundary condition is

[p/(r r)]s = - 1 , (49a)

s
[ + =rA r/3?s = 3 (49b)

One then adjust Ac and pc to satisfy Eqs. (49) and defines al and a2

(a3 = 0) by

al = Rps , (50a)

a2 =2 R(3S + R, r) s (50b)
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If I / A, then the proper constraints are

[p/rpr]s = - 1 ,(51a)

2
[(3A + r? r)/(2\ + )s = 3 (51b)

R[(* r - ,r)/( - *)Is = 3 (51c)

and one adjusts ,c' tc and [(I - A)/r2 c to satisfy these three constraints;

defining a
1
and a2 as in Eqs. (50), and

1 3
a3 = 3R (\s - s) (52)

As far as the exterior metric is concerned, all of the information

about the stellar model is contained in the parameters al, a
2
, and a3 (and

a
4

in the general case). Each different set of values for these constants

corresponds to a different mass and radius of the star. Indeed, the total

mass-energy of the star ("gravitating mass") as determined by g0 0 and using

Eqs. (41) and (47) is

1
m = al + K(3a2 - al) (53)

(a1 and a2 determined by matching conditions at the surface). It is dif-

ficult to say what each parameter corresponds to physically (in terms of

integrals over the source, etc.) because of the complexity of the inhomo-

geneous equations [cf. Eqs. (44)]. The only definite statement is that the

particular combination of al and a2 given in Eq. (53) corresponds to the

total mass.

A further interesting fact is that, for a given choice of a, f, K, the

PPN parameters 7 and B - as determined by a l/r expansion of the isotropic

version of the metric - are functions of a1 and a2 and in general are not
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equal to their values as determined in the PN limit. (This situation is

also true in the Dicke-Brans-Jordan theory.)25 Only in the case of a weakly

gravitating star can one be sure that the two different determinations of 7

and P will agree approximately (to within PN precision). In GRT, on the

other hand, expansion of the Schwarzschild metric gives 7 = f = 1 regardless

of stellar model, and in agreement with the y and P as determined in the PN

limit of the theory.

Table I gives a comparison between our stellar-structure equations

and those of GRT.

IV. ANALYSIS OF AN EXACT EXTERIOR SOLUTION

A. The Metric

As pointed out in the last section, the general exterior metric of a

static spherically symmetric spacetime is a 4-parameter family [cf. Eq. (38)].

Let us analyze a member of that family. First of all, for simplification,

we choose a3 = a = = , which puts the metric of Eq. (38) in isotropic form.

Next, using Eq. (53) as a definition of the mass m, we choose al, a
2
, and K

such that a l/r expansion of the metric indicates that the PPN parameters

y and P are both unity (see Sec. II). In other words, choose a a a2, and K

such that1
1

g = - 1 + 2m/ -2 (m/ p)2 + O(p ) (54a)

gij= - 5ijl + 2m/p) + o(p '2) (54b)

which requires

al/m = 1 , (55a)

a
2
/m = 3 , (55b)

K= 1/16 (55c)
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It is interesting to note that the value for K given in Eq. (55c) is the same

value required for y = 0 = 1 in the weak-field PN expansion [cf. Sec. II and

Eq. (30)). Using Eqs. (55) and Eq. (38), one can now write the line element

as

(1i m/p) 2 (1 m/p)2
2 (1 2 2 2 m/p) 2 22 2 2 2

ds = )2 dt + 2 (dp2 + pd + p2sin2Od2) . (56)

(1 + 2 m/p2 (1 - 2 m/p)

The line element given in Eq. (56) is the simplist static spherically sym-

metric metric which yields the same light bending and perihelion shift (viz.

y = D = 1) as in GRT. (Note that the value of g0 0 is identical to the correspond-

ing term in the isotropic form of the GRT Schwarzschild geometry.)

B. Geodesic Completeness and Radial Geodesics

A glance at Eq. (56) reveals that p = 1.5 m is an infinite proper radial

distance away from any p > 1.5 m. To investigate whether this point is

removed from the physical manifold we need to look at null and timelike

geodesics. Consider equatorial orbits (no loss of generality with spheri-

cal symmetry) and consider the first integrals of the motion for particles

and photons:

ua = - 1i (Uo)2 g + go (up)2 +(u)2 g , (57a)

goo(po)2 + gOO(Po)2 + g'p(p )2 = O (57b)

where u = dx /dT for particles and PC = dx /d? (with A the affine para-

meter) for photons. It is well known (see, e.g., Ref. 27) that for a metric

of the form of Eq. (26), uO, u
w

and (PaPO) are all constants of the motion,

which we shall denote by - E, L, and Q, respectively. Physically, these

constants are energy per unit rest mass, angular momentum per unit rest mass,

%
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and impact parameter respectively.

Using the above, Eq. (57a) can be written as

u= dp/d ( ) ( + - - (Lp)] (58a)

where

P / p/m, L - L/m, etc. , (58b)

and

r(Lp) 1() +) _ 1)2 + (L_/ 2 p - 321 (58c)

The function r plays the role of an effective potential, which we shall

discuss later. Equation (57b) can be written as

3 4

(dp/dt) = [2] (27_ 2) (59a)
P P + 2

where

1 3 -1 2(59b)
-- P(P + -)('P -2) · (59b)

Consider first radial geodesics (L = I = 0). Then Eq. (58a) indicates clearly

that p = 3/2 is an infinite proper time away from timelike geodesics. If

one then uses the fact that PO = g0 0 dt/d? = constant for the null radial

geodesics together with Eq. (59a), then it is also easy to show that

p = 3/2 is an infinite affine parameter distance away for null radial geo-

desics. Equations (58) and (59) indicate that nonradial geodesics between

any two values of p take even longer proper time and affine parameter than

do radial geodesics. Thus we have shown that p = 3/2 is really unreachable

by particles and photons; in particular, the manifold covered by our coordi-

nate system is maximal.
2 8

Since one can also show that there are no singu-

larities for p - 3/2, our manifold is geodesically complete.2 8

For the special case of radial geodesics, we integrate Eq. (58a) to
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yield

=b
1
2 2b(X + 1) + 2c( -l + d 

T b- In 2 - -Id 3/2sinI -i (60a)

p -

1 -

+ const. for 2 < E < 1

where

b (4E2 - 1)1/2 (60b)

c 2E2 - 1 , (60c)

_2
d 1 - E (60d)

X [(1 + E2) - c( + ]1 . (60e)

We will not be interested in analytic solutions for values of E other than

those indicated in Eq. (60). To obtain the functional relationship between

coordinate time t and p for 1/2 < E < 1, add to Eq. (60a) a factor of 4

multiplying the log term and a factor of (3 - 2E ) multiplying the inverse

sine term.

For radial photon geodesics, Eq. (59a) can be integrated to yield

t = + (p + 2Injp - 21) + const. (61)

Figure 1 illustrates a few of the radial geodesics for photons and particles,

the latter released from rest at p = 10 and p = 5. It is interesting to note

that the analogous metric in GRT is geodesically incomplete: p = 1/2 can be

reached in finite proper time, but requires infinite coordinate time.

It can be shown, from analysis of the metric, that another complete

universe exists for 1/2 ' p ' 3/2. However, if we assume the geometry to be

produced by a star which originated in our universe, then its surface lies

outside p = 3/2. In the following we consider only the region p > 3/2.
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B. Proper Surface Areas and Embedding Diagrams

There are some curious geometrical effects in our manifold, not to be

found in the Schwarzschild geometry of GRT. The proper surface area of a

sphere described by p = const. is

A = 4 m2 1 12 (_ 3)-2 (62)

t ' ,? A plot of this area is given in Fig. 2, in which the abcissa is marked off

not only by p but also by the proper time as measured by a radially falling

observer. As can be seen in the figure, the observer sees the sequence of

surface areas pass through a minimum, AMIN = 4mm2 (49/4 + 5/6) at

p = 3/2 + 1/2F/6, and then increase without bound as p = 3/2 is approached.

Another interesting feature arises when we examine the intrinsic geo-

metry of the 2-surface: t = const., 6 = 4/2 by the use of an embedding

diagram. By equating the two-dimensional metric

ds2 (- !)2 (_ 3- -)2 (dp2 + p2 dQ2 ) (63a)

to the metric of a surface of revolution in a Euclidean 3-space

ds2 =dz2+ dr2 + r2d =[(dz/dr) + 1] dr + r2 d , (63b)

one can visualize the geometry of Eq. (63a). If we can find z(r), or more

easily z(p) and r(p), then the line element of Eq. (63b) can be drawn.

Clearly

r = 5(-p )(5 - 3) (64)

The function z(p) is the solution of the equation

=d) ( dp _ 2 T -5 2 -dpJ -3)2 32 (25a)
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_ - 1/2 -2 - 31/2- 3-2/dp~ = p /~(2p 5P + )/2(p - 2) (65b)

The right-hand side of Eq. (65b) becomes complex at

P = (5 + ') 4 2.1 21 or r 4.8 (66)

This indicates that for 1.5 < p < 2.1 we will have to embed in a pseudo-

Euclidean space, i.e.,

ds2 = _ d 2 + dr2 + rfd2 (67)

The embedding diagram is given in Fig. 3 and includes both the Euclidean

part and the pseudo-Euclidean part. The surface is obtained by rotating

the curve about the z or iz axis.

C. Particle and Photon Orbits

_De,
I' 0·, o\·

Analysis of orbits is facilitated by use of the effective potential.

Equations (58c) and (59b) give the effective potentials for massive particles

and photons. For a given value of L, the particle is allowed only in those

regions for which r(L,p) ' E. For photons, 7 acts as an "inverse" effec-

tive potential; photons are allowed only in regions for which y ' Q. Figures

4 and 5 illustrate the effective potentials for particles and photons, respec-

tively, with the dots in Fig. 4 indicating extrema of the potential (circular

orbits). The closest stable circular orbit for particles occurs for L - 3.88

at p - 7. For particles with larger L, the circular orbits with p < 7 are

unstable and those with p > 7 are stable. The circular photon orbit occurs

at p = 1.5 + r3 or r - 5. This can be compared with the corresponding value

of r = 3 in GRT.
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V. GRAVITATIONAL WAVES AND CONSERVATION LAWS

A. Monopole Waves

In the full theory (no linearized approximation) the homogeneous field

equations are, as indicated previously,

oa1 C43 h" = o , (68)

and gravitational waves travel geodesics of q rather than g. The impli-

cation of this last fact will be explored later. The simplicity of the

vacuum field equations [cf. Eq. (68)] is of great help in constructing

solutions.

Consider a time-dependent spherically symmetric solution to Eq. (68),

for example

ho0 0 = r lei(rt) (69a)

hij = ij -leiw(r-t) (69b)

The Riemann tensor constructed from the resulting time-dependent spherically

symmetric metric is itself time dependent. From this we conclude the pre-

sence of physical monopole waves; thus there is no analogue of Birkhoff's

12
theorem in this theory. The existence of such solutions in our theory

and the accompanying monopole radiation complicate the problem of the spheri-

cal collapse of a star. As will be shown below, there are other "non-GRT'

type gravitation-wave modes in addition to the monopole waves.

B. Linearized Theory and Plane Gravitational Waves

In analyzing weak gravitational waves, one should restrict one's atten-

tion to the form and behavior of the Riemann tensor, not only because it is

gauge invariant (under infinitesimal coordinate transformations) but also
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because it is that feature of the gravitational wave which interacts directly

with test bodies. Work in a coordinate system in which rv is Minkowskian

and h is small (small deviations from flat space). Then

g4 = gv + h - 2Kh1 v + O(h2) T1 + h + O(h2) (70)
=Lv -v vv Pv v 'v

and

R = (h' + h' y, -h') - (71)

Furthermore, restrict one's attention to those solutions of Eq. (68) which

represent plane waves travelling in the z direction, i.e.,

h' = A eik(
z - t) (72)

where A is a constant amplitude and k a wave number. To analyze the
p-v

decomposition of Ro0E5 into independent "wave modes" in as invariant a manner

as possible, one should investigate the transformation properties of R

under those Lorentz transformations which leave the wave direction fixed.

With such transformations in mind one selects a new basis in which the com-

ponents of R are to be computed - the quasi-orthonormal tetrad basis

(see, e.g., Ref. 29 for a complete discussion of the "tetrad formalism").

k = 2-1/2(-1, O,,l) , (73a)

= 2-1/2(1,0,0,1) (73b)

m= 2-1/2(0,1, i, 0) (73c)

= 2-1/2(0,1,-i,) ) (73d)

Note that one of the "tetrad legs" points along the direction of the wave.

In such a basis the components of the Riemann tensor are

R k = RCo nCkmI , etc. . (74)
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Using Eqs. (71)-(74) one finds that the only nonvanishing components of the

Riemann tensor are those with two I's - thus there are six possible degrees

of freedom. Since there are no restrictions on the Riemann tensor once

Eqs. (68) are satisfied, all six tetrad components will in general be non-

vanishing and our theory thus has six independent gravitational wave modes.

In GRT, as a contrast, the field equations RR = 0 imply vanishing of

R R R kf-m and R -mi- so that there are only two degrees of freedom
Mk~k' Iklm' Ik~m' and

- those represented by Rmfm and its complex conjugate R- -m.

The reader is referred to Refs. 3 and 4 for details of the transformation

properties of the objects indicated in Eq. (74). Here we quote only the

results: We denote the six wave modes by 2' T3' %3' Y4' %4' 22 and in

terms of the tetrad components of the Riemann tensor and "electric" coordi-

nate components of the Riemann tensor (those which are directly physically

measurable) these are

1R R (75a)2 - 6 k =k 6 tztz

1 1
53 2 Rkim 2 txtz tytz) ' (75b)

53 -2 Rklm = 2(R txtz + iRtytz) (75c)

R- R R R + 2iR (75d)
4 m- Rm tyty tztz txty (

R- m = Rty R 2 iRtt (75e)

1
22 2 Rm= m txtx tyty

The presence or absence of a T2 component in a gravitational wave is Lorentz

invariant. If T2 is absent in a particular wave, the presence or absence

of *3 (or f3) in that wave is also Lorentz invariant. As outlined in Refs.
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3 and 4, if either T2 or $3 is present in a wave (in many theories they are

always absent, but not ours), then it is impossible to decompose the wave

into states of definite helicity (spin) in a Lorentz invariant manner: what

one observer identifies as "pure spin O" another observer will identify as

"pure spin O" plus "pure spin 1," etc. . Only waves containing only 022'

T4, and *4 can be decomposed into pure spins: spin 0 and spin 2. In general,

then, there is no unique spin decomposition of waves in our theory and it is

of class II6 (see Refs. 3 and 4 for a complete discussion of the "classifica-

tion scheme"). The physical imprints of the various modes will be discussed

in Sec. VI.

B. The Stress-Energy Pseudo Tensor for Gravitational Waves

For all Lagrangian-based theories a very general method, with roots

30
going back to Noether, exists for constructing conserved quantities (see

Ref. 5 and the references quoted therein for a more complete discussion).

Invariance of the gravitational Lagrangian under coordinate transformations

leads to the following identities:

(t' v_ U AA)
-W, 0 U e, (76)

where % is the gravitational Lagrangian density, -GA is the variational

derivative of z
G

with respect to field YA occurring in eG

v v GeY
t' - y YA¥ ' (77a)

and U A is defined by the functional changes of the YA, fiYA, under infini-

tesimal coordinate transformations, i.e.,

ifl = xP + l , (77b)

5YA = UpA t - YA, 
¢

' (77c)
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We have assumed ?G contains no higher than first derivatives of the YA;

generalization to higher derivatives is straightforward. Equations (76)

are of the form of conservation laws and our object is to identify in a

physically meaningful way the gravitational portion of the conserved quantity.

To facilitate the computation, we assume eG has been rewritten in terms of

no, and g c [which can be done in principle by solving for hQ (g rv,>v)].

Using the tensor transformation law for gc~ and no.' one easily shows

UpA Y=- P(oP) for YA = Yf ' (78)

where parentheses denote symmetrization of indices. Using Eq. (78) we

find the relation

U v Avi = 2 (I)g v(M/r) - 2g~ (u) , (79)

where

e, (ig) = %(h,~)

If we now use the field equations

/.g = - /gc , (80)

and Eq. (4c), Eq. (79) becomes

vVA , V 1 /2( V V 1/2T v
UA

m
2q 9( ) (G/ SRo

~)
+ (- g)l/2 T v - v 1/2=-act 2 V% + g/T (81)

We point out that although Eqs. (76) are "strong conservation laws"3 1

(identities), one must use Eqs. (80) to get out a physically useful result.

Substitution of Eq. (81) into Eq. (76) yields

(t - (v g)l/2TV) = 0 (82a)



where

t _ t V V . (82b)

The conserved energy momentum vector is then

PJ (t - ( g)2 d x . (83)

Since P in Eq. (83) contains a contribution from the matter stress energy

tensor, we know we are on the right track. Problems arise when we notice

that the quantity defined in Eq. (82b) is in general not positive definite,

v
as a result of contributions from n . However, it can be shown from the

generalized Bianchi identities of this theory (see Appendix B) that X,

obeys the equation

Vn Iv = o (84)

Actually, Eddington
3 2

was the first to point out that conservation laws of

the form of Eq. (84) follow from theories with absolute objects.2 If we

now choose to work in the coordinate system in which T1, is the globally

constant Minkowski metric, Eq. (84) becomes

v
G ,v o (85)

and we see that A~ is conserved by itself, independently of energy gain or

loss from matter (T V). Since our usual idea of total energy conservation

involves interactions, it is perhaps more useful to omit the separately con-

served AX from consideration and to define, in this frame, the gravitational

stress-energy tensor as

t V = t v (8)

Thus nA/ represents the energy density of a quantity associated with the
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absolute field nPv; at present we must regard it as a purely mathematical

quantity whose noninteraction with matter mirrors the absolute nature of

~v' (As an aside, there always exists a t v which is a real tensor and

not a pseudo-tensor in prior-geometric theories of gravity.
5
)

We point out that in the linearized approximation Eq. (85) is always

the expression of Eq. (84) in all frames related to the global Minkowski

frame by infinitesimal coordinate (gauge) transformations. We proceed by

explicitly calculating t for the linearized theory. From Eq. (77a)

t 5 vp~, +P; __ 7wV ~ ~ ~ ~ I ____V

tGV = - 5.V 'G + 6h a P g~~L a43, V C3 1v Y5, W TB, V C3~
(87)

Inverting the linearized relation between gca and h0~ [cf. Eq. (70)] and

taking the required partial derivatives, we find

3ah7, o a~g v= (y)5 5 + 2K(1 - 8K)
- 1

~h7~, J/ 04, v 
=

Y 7 6 
1C~v

q78B b 
(88)

Using Eqs. (87), (88), and Eq. (2) for SG, we finally obtain

t v (16)
-

1 [t5 (ahY'h7 A + fh' ah,a) - 2(ahCVh + fh h'V)] (89)

Since h transforms as a tensor, the above expression is gauge invariant.

Equation (89) expresses a naturally defined stress-energy complex for the

gravitational field.

Consider the energy density in a plane gravitational wave

a ; k . (

h -a A7 eYe 2 kka =0 . (90)
a

Then the first two terms in Eq. (89) do not contribute to to Vand one obtains
p.

tV c k k
V

p. p.
(91a)
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with

to = (8) -l[a(h O)
2

+ f(h o)2] (91b)

With the suggested values for a and f [cf. Eq. (30)], Eq. (91b) indicates a

positive definite energy density. It is encouraging to note that for pure

spin 2 waves (only *4 present), Eq. (91b) becomes, for a = 1/4 [cf. Eq. (30)],

t o = a()-l (hxx o) = (16)- (h xxO) (92)
spin 2

which is identical to the corresponding expression in GRT.

VI. THE GRAVITATIONAL CONSTANT AND FURTHER EXPERIMENTAL TESTS

A. A Time-Dependent Gravitational Constant

As discussed in Sec. II, a number of existing solar system experiments

place upper limits on the cosmological boundary values of h [cf. Eqs.

(31)-(32)]. These constraints can always be satisfied in a given epoch. A

more relevant point is the time dependence of the w v, which is directly

related to the time dependence of the gravitational constant G. With the

choice of adjustable constants given in Eq. (30), and using the explicit

functional forms for K1 Do, D, one finds from Eq. (27) and Appendix A that

1 - 1 (19w + 7wO) + O(w) =G (93a)

Thus

() dG/dt 1 (19wl/dt + 7dwo/dt) (93b)

33
Shapiro et al. have placed limits on the time dependence of the gravita-

tional constant by comparing the periods of planets with the ticking rates

of atomic clocks. They find
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I(G) (dG/dt)l < 4 X 10- 10/year . (94)

This constitutes an experimental constraint on the magnitude of the time

derivatives of w occurring in Eq. (93b). Preliminary results from our
IJv

cosmological solutionl 9 indicate that the time dependences of w
0
and w1

satisfy Eq. (94), but an improved Shapiro experiment might still prove to

be a crucial experimental test of our theory.

B. Gravitational-Wave Experiments

The analysis of the preceding section reveals two crucial new experi-

mental tests of our theory involving gravitational waves - two tests which

have blossomed from our current program (see introductory remarks in Sec.

I) - two tests which emphasize gravitational wave detection as a powerful

new tool for probing metric theories of gravity. The two tests are (i)

time delay between simultaneously emitted gravitational and electromagnetic

waves and (ii) polarizations of gravitational waves.

Since gravitational waves travel along geodesics of the "fast metric"

no~ and electromagnetic waves travel along geodesics of the "slow metric"

9g~, there should be a time delay in reception of the two waves - emitted,

for example, in simultaneous bursts by a supernova explosion. For waves

emitted at the center of the galaxy, an order of magnitude estimate indicates

Time Delay - (m/r)galaxy (light travel time)

- (5 X 10- 7 ) ' (3 X 104 light years) m 5 days . (95)

Much longer delay times would hold for the Virgo Cluster.

Polarization information is also a crucial experimental test. Equations
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(75) indicate a purely longitudinal mode ( 2), mixed longitudinal-transverse

quadrupole type modes (*3, i9), a purely transverse "breathing" mode (022)'

and the familiar transverse quadrupole modes of GRT (th, h4). If an observer

knows the direction of the wave, he can use Eqs. (75) to unambiguously catalogue

the modes. If he does not know the direction of the source, he can still draw

some conclusions. For example, if displacements do occur in more than one

plane, then either the longitudinal-transverse modes (~3, r3) are present,

or the purely longitudinal mode (v
2
) is mixed in with one of the purely trans-

verse modes (t4 --4' 22)

It is important to note that until the problem of the generation of the

various types of waves by particular sources is solved, our theory can only

be verified by the presence of - but not ruled out by the absence of - the

various possible modes indicated in Eqs. (75). This is unfortunate. But

new doorways have been opened in the area of experimental tests and it is

clear that gravitational tests outside of the PPN formalism must be contem-

plated in the future.
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APPENDIX A

CONSTANTS APPEARING IN PN LIMIT (Sec. II)

O -- WOO

W1 -W11

w =- 3w
1

- w0

Eq. (12a): - 1 - 2Kw +

=- 1- 2Kw -

K2 w2 + 2KW +' w0

3
2 -0

m - 2K + 2K2w + 2Kw0

Eq. (12b): D - 1 - 2Kw + w1 +

E - 1 - 2Kw + w

K2w2 3 2
K w - 2Kw

1
+ w

1

F - -2K(1 + W1) + 2K w

3 3
H - 1 - 2Kw - T w0 + -,° w1

I - D,1/2 D- 3/2

I o
1 2 \D + E

1 /3F FO E\

2 2\D D D

I - D

L - (a + f) f(

L - (a + hf) 1 [f(1 - 2Kw) + 2Ka(l -

M - (a + 4f)-1 (2Ka + 3 f)

N - 2k(f + Ka)(a + 4f)- 1

40o

DO

E0

Fo

- WO

Eq. (12c):

Eq. (13):

Kw)]



Eq. (16d):

Eq. (16e):

Eq. (20a):

S0

S
1

-

B0

R0 =

R
i
-

R -2

B =

-
K1 

K2

K3

K4

I1(1 -

I2(1 -

I3(1 -

3 3
2Kw + L - w- MW

O
- M

2Kw + L - 3 wO - Mwo) + N - 2K
2K + L - 2 0 0)

2Kw + L - 3 w0 - Mw ) - L - Mw1

1 - 2Kw + 2 1

I1(Mo- L) + M

I2( o - L) - N

I3(Mwo - L) + L + Mw1

EoCo - F0 (3C 1 - C0 )

- [K 2 (3C1 - C0) + 2KC9 (3C 1 - C0 ) + C02]

r[S
0
C0 + S1(3C 1 - Co0 ) (E0 + F0 ) - 3TFo[RC 0 + R2 (3C 1 - C0 )]

[EoB
0

- F0(R + 3B 1 - B0)]00 0

K
5

- EC
1

+ F(3C1 - C0 )Eq. (2o0b):



APPENDIX B

RELATIONS FOLLOWING FROM GENERALIZED BIANCHI IDENTITIES

Assume that LG has been rewritten as a function of ¥v and g . Since

L
G

is a scalar, its variation under infinitesimal coordinate transformations

must vanish, i.e.,

L = U' + gg d x = O. (B1)

Under the coordinate transformation

X x + t (B2)

the functional changes in the tensors j and g are

8~l~=-ov = - _,Bc - , - a

= -2(a) where T. - ( B3)

gQC =- 2(;)) .(B4)

Now define

( )1/2 Y (B5)

and use the field equations to write

g/1 (_g)1/2 T( ) (B6)

Using Eqs. (B2)-(B6), Eq. (B1) can be written in the form

i 1/2 1 g) 1/2 iT1 /2
0= (- )/2 (Yot) 1 - (- g) (TCe) + 2 ( g)l/2 Tp +

T- O 1/2 )/ Ta] d
4
x * (B7)

Now if we remember that

42



(eTa) = (-. n) 1/2[( nT1/2 7T C ] (B8)

and also the corresponding equation for the covariant derivative with respect

to goa, the first two terms in (B7) vanish with proper boundary conditions

on t . Now use the matter equations, Eqs. (5), and the arbitrariness of

~ (and hence Ta) to get from Eq. (B7)

O = . (B9)

Equation (B9) is not an identity; we had to use both the matter and gravi-

tational field equations to obtain it. [We would have obtained an identity

in the place of Eq. (B9) had we not enforced the dynamical equations.] Since

n is covariantly constant with respect to "slash," Eqs. (B5) and (B9) imply

the desired relation

v = [ - 2 ( A)( /8 )]v = 0 (B10)
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TABLE I

Comparison of Construction of Stellar Models

GRT

Number of coupled differential equations

which must be integrated to find star's surface

Two-Metric
Theory

2 4

Type of differential equations used in deter-

mining metric functions

First-order

linear

Second order

nonlinear

Number of quantities whose central values must

be chosen to satisfy boundary conditions

Analytic Solutions

Uniqueness of solution for given central pres-

sure and equation of state

Number of parameters in exterior metric

44

1 4

Yes

Yes

Probably

not

No
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FIGURE CAPTIONS

Fig. 1. Radial Geodesics of Particles and Photons. The number along the

curves indicate proper time values for massive particles released

from rest at p = 10, 5. One of the curves is a photon geodesic and

all curves have t -+ o and affine parameter + oo as p + 1.5.

Fig. 2. Proper Surface Area of Sphere p = Const. The upper abcissa gives

the proper time of an observer released from p = 10 as a local

coordinate marker.

Fig. 3. Embedding Diagram for Equatorial Geometry. Solid line indicates

Euclidean embedding (refers to z ordinate) and dashed line indi-

cates pseudo-Euclidean embedding (refers to iz ordirate). Numbers

along curve indicate values of p.

Fig. 4. Effective Potential for Massive Objects. Dots indicate circular

orbits.

Fig. 5. Effective Potential for Photons.
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